Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.01.10.574801

ABSTRACT

Post-COVID syndrome (PCS) currently affects approximately 3-17% of people following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has the potential to become a significant global health burden. PCS presents with various symptoms, and methods for improved PCS assessment are presently developed to guide therapy. Nevertheless, there are few mechanistic insights and treatment options. Here, we performed single-cell RNA transcriptomics on nasal biopsies from 33 patients suffering from PCS with mild, moderate, or severe symptoms. We identified 17 different cell clusters representing 12 unique cell populations, including all major epithelial cell types of the conducting airways and basal, secretory, and ciliated cells. Severe PCS was associated with decreased numbers of ciliated cells and the presence of immune cells. Ensuing inflammatory signaling upregulated TGF{beta} and induced an epithelial-mesenchymal transition, which led to the high abundance of basal cells and a mis-stratified epithelium. We confirmed the results in vitro using an air-liquid interface culture and validated TNF as the causal inflammatory cytokine. In summary, our results show that one mechanism for sustained PCS is not through continued viral load, but through the presence of immune cells in nasal tissue leading to impaired mucosal barrier function and repeated infections. These findings could be further explored as a therapeutic option akin to other chronic inflammatory diseases by inhibiting the TNF-TGF{beta} axis, restoring the nasal epithelium, and reducing respiratory tract-related infections.


Subject(s)
Coronavirus Infections , Post-Concussion Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL